

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

AUTOMATED NETWORK MAPPING AND TOPOLOGY
VERIFICATION

by

Anthony R. Collier

June 2016

Thesis Advisor: Gurminder Singh
Co-Advisor: John Gibson

THIS PAGE INTENTIONALLY LEFT BLANK

i

REPORT DOCUMENTATION PAGE Form Approved OMB
No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection
of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork
Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY
(Leave blank)

2. REPORT DATE
June 2016

3. REPORT TYPE AND DATES COVERED
Master’s thesis

4. TITLE AND SUBTITLE
AUTOMATED NETWORK MAPPING AND TOPOLOGY VERIFICATION

5. FUNDING NUMBERS

6. AUTHOR(S) Anthony R. Collier

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND
ADDRESS(ES)

N/A

10. SPONSORING /
MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government. IRB Protocol number ____N/A____.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

 The current military reliance on computer networks for operational missions and administrative
duties makes network stability and security a high priority for military units. The rapid rate at which
technology changes means that constant and continued training is required for the skilled professionals
who maintain and secure these computer networks. Current training methods are insufficient
at representing the complex nature of the typical modern military computer network and the
continually evolving nature of the attacks to networks. The Mapping, Awareness, and
Virtualization Network Administrator Training Tool (MAVNATT) is a proposed system designed
to replicate operational computer networks, through virtualization, providing a stable, accurate, and
safely partitioned training environment that can closely mimic the configuration and functionality of
any operational network. This research provides a solution for the mapping module of the
MAVNATT system in the form of an application. During testing, we successfully developed network
plans, visualized and verified those plans, scanned live networks for comparison and validation
against those plans, and exported the network configurations for import by the MAVNATT
awareness and virtualization modules. The mapping application was developed on a
foundational framework that facilitates expansion and increased functionality during future
research.

14. SUBJECT TERMS
network mapping, network verification, network topology, network administrator training,
MAVNATT, MAST, tactical network

15. NUMBER OF
PAGES

97

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

AUTOMATED NETWORK MAPPING AND TOPOLOGY VERIFICATION

Anthony R. Collier
Captain, United States Marine Corps
B.A., The University of Texas, 2009

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
June 2016

Approved by: Gurminder Singh
Thesis Advisor

John Gibson
Co-Advisor

Peter Denning
Chair, Department of Computer Science

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

The current military reliance on computer networks for operational missions and

administrative duties makes network stability and security a high priority for military

units. The rapid rate at which technology changes means that constant and continued

training is required for the skilled professionals who maintain and secure these computer

networks. Current training methods are insufficient at representing the complex nature of

the typical modern military computer network and the continually evolving nature of the

attacks to networks. The Mapping, Awareness, and Virtualization Network Administrator

Training Tool (MAVNATT) is a proposed system designed to replicate operational

computer networks, through virtualization, providing a stable, accurate, and safely

partitioned training environment that can closely mimic the configuration and

functionality of any operational network. This research provides a solution for the

mapping module of the MAVNATT system in the form of an application. During testing,

we successfully developed network plans, visualized and verified those plans, scanned

live networks for comparison and validation against those plans, and exported the

network configurations for import by the MAVNATT awareness and virtualization

modules. The mapping application was developed on a foundational framework that

facilitates expansion and increased functionality during future research.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. PURPOSE ...1
B. SCOPE AND BOUNDARIES ...2
C. THESIS ORGANIZATION ..3

1. Chapter II: Background ..3
2. Chapter III: Design and Implementation3
3. Chapter IV: Testing and Evaluation ..3
4. Chapter V: Conclusion and Future Work4

II. BACKGROUND ..5
A. MAVNATT ...5
B. NETWORK TOPOLOGY AND CHARACTERISTICS6

1. Open Systems Interconnection Reference Model8
2. Internet Protocol Suite ..12

C. EXISTING TOOLS AND RESOURCES ..17
1. NMap Security Scanner ..18
2. Java Universal Network/Graph Framework20
3. GraphML File Format ..22

D. SUMMARY ..24

III. DESIGN AND IMPLEMENTATION ...25
A. APPLICATION DESCRIPTION ...25
B. OBJECT-ORIENTED FRAMEWORK ..25

1. Interface and SwitchInterface Objects26
2. Node Object ..27
3. Edge Object ..28
4. Subnet Object ...28
5. Status and Device Enumerations ..29
6. Network Object ..30

C. PROGRAM FLOW OF EXECUTION ...31
1. Network Plan Generation ..31
2. Network Plan Import and Visualization33
3. Live Network Scan and Visualization ..35
4. Results Output ..39

D. SUMMARY ..41

 viii

IV. TESTING AND EVALUATION ..43
A. OVERVIEW OF TESTING..43
B. TEST NETWORK ENVIRONMENT ...43
C. TEST NETWORK PLANS AND CONFIGURATIONS44

1. Control Configuration ...45
2. Invalid Network Plan Testing ...46
3. Incorrect Network Details Testing ...48
4. Invalid Network Configuration Testing.....................................51

D. SUMMARY ..53

V. CONCLUSION AND FUTURE WORK ...55
A. CONCLUSION ..55
B. FUTURE WORK ...57

1. Increased Detail and Flexibility ..57
2. Mapping Unknown Networks ...58
3. Integration, Testing, and Utilization ..60

APPENDIX A. NETWORK FRAMEWORK UML DIAGRAM...............................63

APPENDIX B. NETWORK PLAN CSV FILE ..65

APPENDIX C. LIVE NETWORK DETAILS FILE ...67

APPENDIX D. CONTROL CONFIGURATION NETWORK PLAN71

APPENDIX E. INVALID NETWORK PLAN ...73

APPENDIX F. INCORRECT DETAILS NETWORK PLAN75

APPENDIX G. INVALID CONFIGURATION NETWORK PLAN77

LIST OF REFERENCES ..79

INITIAL DISTRIBUTION LIST ...81

 ix

LIST OF FIGURES

Figure 1. Proposed MAVNATT Framework. Source: [1]. ...6

Figure 2. Example LAN Configuration. ..7

Figure 3. Overview of the OSI Reference Model. Source: [3].8

Figure 4. Example Subnet Addressing Using CIDR Notation. Source: [7].11

Figure 5. OSI Reference Model and the IP Suite Comparison. Source: [10].13

Figure 6. ARP Packet Data Fields. Source: [11]. ..14

Figure 7. IPv4 Packet Header Data Fields. Source: [13]. ..15

Figure 8. ICMP Packet Header Data Fields. Source: [13] ..16

Figure 9. TCP Packet Header Data Fields. Source: [13]. ..17

Figure 10. Example Output of an NMap Scan on a Remote Host.19

Figure 11. Sample Graph Display Using the JUNG Visualization Library.
Source: [17]. ...21

Figure 12. Example JUNG Transformer Implementation ...22

Figure 13. GraphML Representation of the Network Graph Shown in Figure 11.24

Figure 14. UML Diagram for Interface Object. ..26

Figure 15. UML Diagram for SwitchInterface Object. ...27

Figure 16. UML Diagram for Node Object. ..27

Figure 17. UML Diagram for Edge Object. ..28

Figure 18. UML Diagram for Subnet Object. ...28

Figure 19. UML Diagram for Status Enumeration..29

Figure 20. UML Diagram for Device Enumeration. ...30

Figure 21. UML Diagram for Network Object. ..31

Figure 22. Example Network Plan Format. ...32

 x

Figure 23. Import Log After Parsing the Network Plan Shown in Figure 22.34

Figure 24. Visualization after Parsing the Network Plan Shown in Figure 22.35

Figure 25. Example Scan Report Console Output. ...37

Figure 26. Visualization of Live Network Scan Results. ..40

Figure 27. Test Network Environment Configuration. ...44

Figure 28. Control Configuration Network Plan Parse Log.45

Figure 29. Control Configuration Visualizations. ...46

Figure 30. Invalid Network Plan Parse Log. ...47

Figure 31. Invalid Network Plan Visualization. ..48

Figure 32. Incorrect Network Details Scan Log. ...49

Figure 33. Incorrect Network Details Visualizations. ...50

Figure 34. Invalid Network Configuration Scan Log. ...52

Figure 35. Invalid Network Configuration Scan Visualization.53

 xi

LIST OF ACRONYMS AND ABBREVIATIONS

ARP address resolution protocol

CIDR classless inter-domain routing

CSV comma-separated values

DNS domain name system

ICMP Internet control message protocol

IETF Internet engineering task force

IP Internet protocol

JUNG Java universal network/graph

LAN local area network

MAC media access control

MAVNATT mapping, awareness, and virtualization network administrator
 training tool

NIC network interface card

OS operating system

OSI open systems interconnection

RFC request for comments

TCP transmission control protocol

UML unified modeling language

XML extensible markup language

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

ACKNOWLEDGMENTS

I would like to thank all of my friends and family who have given me

encouragement and support over the years. To my silly, smart, and beautiful daughters,

Grace and Emily: you always make me smile. Thank you for being so amazing. Most of

all, I would like to thank my lovely wife, Nicole. You have helped keep me on track by

providing countless hours of encouragement, motivation, and support. You have endured

long restless nights, numerous deadlines, and lots of “grumpy Anthony” as a result of this

research. I cannot wait to start the rest of our lives together.

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. PURPOSE

Today's military is increasingly reliant on technology and connectivity to conduct

training, day-to-day operations, and mission execution. Computer networks have become

ubiquitous at all levels of organization, including the small units that make up the

foundation of the Marine Corps. These networks are a cornerstone for modern operations

and communication: they must be secure and robust. The requisite proper maintenance

and administration of military computer networks is a challenging task, which requires

continual training to stay abreast with the pace of changing technology and the periodic

emergence of external threats.

Due to the inherent nature and complexity of computer networks, variations in

configuration and topology are commonplace. For this reason, the live networks found at

the small-unit level often present a unique set of security and administration

requirements. Training scenarios executed on a live network provide the best opportunity

for realism and functionality; however, doing so introduces additional risks and the

potential for operational impact should a network problem arise during training. For this

reason, network administrators are often required to seek alternative solutions for

network training and system testing.

A typical model for network administrator training involves the establishment of a

small, stand-alone network using physical hardware. Users can adjust settings, introduce

changes or malicious programs, and conduct network-related simulations and scenarios

using this training network. The setup and configuration of such networks is laborious,

and the size and scope of these networks are necessarily limited by available space and

equipment. Creating an exact working physical replica of a live network that correctly

mimics traffic and topology is not a viable option. These factors limit the utility of

training on such networks.

The Mapping, Awareness, and Virtualization Network Administrator Training

Tool (MAVNATT) [1] is a proposed system that provides a solution to deficiencies in the

 2

current training model. MAVNATT is a tool that allows network administrators to plan

and validate a network layout, scan a live network to compare configuration settings

against the plan, monitor the live network for changes or the emergence of potential

threats, and create a virtualized replica of the network. This virtualized version of

a network can be used for training and evaluation purposes, allowing network

administrators to train on an isolated network “virtually” identical to their live network.

The focus of this thesis is the development of an application that satisfies the

requirements for the mapping portion of the MAVNATT system. This application

should provide functionality for network administrators to develop a network plan,

visualize and verify that plan, scan the live network for comparison and validation, and

export the network configuration for import and use by the MAVNATT awareness and

virtualization modules.

B. SCOPE AND BOUNDARIES

The mapping application detailed in this thesis is intended to be used as a tool by

network administrators to accurately and efficiently capture details of their LAN

configuration and topology. These details can be stored or exported for use in other

applications within the MAVNATT system. There is a large amount of information

available to categorize and describe a network, making it necessary to limit the scope of

and boundaries of mapping efforts. This implementation of the MAVNATT mapping

application makes the following assumptions:

 The network administrator using the application has system administrator-
level privileges for the respective operational network and is able to install
and execute programs and send traffic over that network.

 The user has prior knowledge of the network that is to be mapped,
including the expected configuration and details of individual connected
devices.

 Only devices on the local network are to be included in the results of the
mapping effort. External devices will not be mapped.

 The mapping application does not consider physical network topology,
meaning the actual physical location of devices on the network.

 3

 Logical and hardware addresses of individual devices on the network are
static and are not expected to change after their initial assignment.

 The mapping application provides a snapshot of the current network
configuration at the time of execution.

C. THESIS ORGANIZATION

This thesis is organized into four additional chapters: background, design and

implementation, testing and evaluation, and conclusion and proposed future work.

1. Chapter II: Background

This chapter describes the purpose and characteristics of the proposed

MAVNATT system along with some defining characteristics and properties of local area

networks (LANs). Detailed analysis of LAN traffic provides all the information necessary

to accurately map a network’s topology and catalog individual devices connected to that

network. The chapter also gives a brief description and analysis of some existing tools

and programs that can be used to analyze and evaluate relevant network traffic.

2. Chapter III: Design and Implementation

This chapter describes the design and implementation of the MAVNATT

mapping application, as well as the program flow of execution when using it to map a

network. The program architecture and framework are described in detail, allowing for

further implementation and adaptation during future research. This object-oriented

framework allows for the capture and manipulation of all necessary data to accurately

describe a network, individual attached devices, and the complex relational interaction

between devices. The program flow of execution is a detailed step-by-step walkthrough

of the mapping process from start to finish.

3. Chapter IV: Testing and Evaluation

This chapter describes testing and evaluation of the mapping application, to

include results and findings. Individual tests are conducted to evaluate the mapping

application's ability to represent a planned network while identifying potential errors in

the respective network plan. Live network scans are conducted on a controlled physical

 4

network environment, allowing testing and evaluation of specific network details. The

network environment is configured to closely resemble a typical topology of networks

used by small units in the Marine Corps.

4. Chapter V: Conclusion and Future Work

The final chapter provides a summary of work conducted in this thesis, its

findings, and the resulting functionality of the MAVNATT mapping application.

Suggestions for areas of future work and research allow for continued development,

integration and implementation of the mapping application, and the MAVNATT system

as a whole.

 5

II. BACKGROUND

The proper design and configuration of a computer network is a complex task.

Simple mistakes in configuration files or device settings can lead to network instability,

unexpected network activity, or the inability to use the network as intended. Verification

of these settings can be accomplished through analysis of data as it transits the network.

However, the sheer volume of available data makes manual network verification tedious

and prone to errors. Automated tools allow network administrators to more easily gather

and analyze data and develop a picture of the proposed and existing network topology. A

thorough definition of the term “network topology” further facilitates the proper use of

available network data to make inferences and conclusions about the layout and

configuration of that network, including number and role of comprising elements, along

with their representative data patterns. Once these are properly scoped, we can use

existing tools to automate traffic analysis and effectively map a network.

A. MAVNATT

MAVNATT is a system proposed by Naval Postgraduate School student, Daniel

McBride [1], which is undergoing continued research and development. McBride

identified challenges presented to military network administrators when establishing and

maintaining small-scale networks, such as those found at the individual unit level. Upon

properly configuring a computer network, the system administrator often forbids any

changes to that network for fear of disrupting the stable state. This inaccessibility to the

live network limits options for training scenarios. The current model is to establish a

separate stand-alone network on which users can introduce problems or scenarios for

training purposes.

The MAVNATT system (see Figure 1) allows a user to replicate a live network in

a virtual environment that can then be used for training. The mapping module provides

functionality to scan and accurately represent an existing live network and is the focus of

this thesis. The awareness module provides the network administrator with real-time

updates of changes and status of the network. The Virtualization module generates a

 6

replica of the live network in a virtualized environment. All modules are interconnected

by the underlying framework, and together they can be used to both monitor the live

network and provide a realistic training environment.

Figure 1. Proposed MAVNATT Framework. Source: [1].

The MAVNATT model allows for more effective training than the current model,

as it simulates operation on the actual live network with duplicate configurations and

settings. The focus of this thesis is the development of the mapping module, which will

import a proposed network plan, scan the live network, and provide specifications of

either the planned network or the actual network. The virtualization module can use these

specifications to create an accurate replica of the network for awareness and training

purposes.

B. NETWORK TOPOLOGY AND CHARACTERISTICS

We define network topology as the collection of information detailing the logical

layout and configuration of networked devices, including the interconnections between

those devices (see Figure 2). This collection of information includes amplifying data

about the networked devices such as hardware details, logical addressing schemes,

 7

operating system used, applications in use, and potential user information. Devices such

as routers, switches, and hubs facilitate forwarding traffic throughout the local network

and, specific to the routers, beyond. Client devices are the end users and can include

computers, printers, hand-held devices; essentially any device that can be connected to

the network to send and receive data. In this thesis, we focus on the topology of LANs. In

addition to connected devices, the subdivision of the LAN into even smaller subnetworks

is an important characteristic of network topology and must be given due consideration,

as it greatly complicates the mapping task.

A typical LAN topology distributes client devices and locally hosted servers across
multiple subnets, allowing for greater control of traffic flow.

Figure 2. Example LAN Configuration.

It is important to note that we are not concerned with physical topology, meaning

the physical location of devices and their relative distance to other devices in the

network. Rather, we are concerned with the logical layout: which routers are connected to

one another and at what points are clients connected to the network.

 8

1. Open Systems Interconnection Reference Model

The network topology can be derived through careful analysis of existing traffic

on the network. However, the type and composition of traffic accessible on a LAN varies

widely depending on the connected devices and the applications executing on those

devices. The Open Systems Interconnection (OSI) Reference Model is an abstract

concept of data encapsulation that allows for the transit of data through the internal

structure of a computer as well as across networks [2]. This layered approach of

abstraction (see Figure 3) facilitates interfacing between applications and hardware

without the requirement to design and implement a system from the ground up for each

new application. The model also allows for the scaling of systems and networks while

ensuring compatibility between networking entities [2]. While the OSI Model outlines an

overall concept for the design of networked systems, it does not detail any concrete

protocols or specifications. These specifics are left to other models that implement the

OSI Model guidelines.

Figure 3. Overview of the OSI Reference Model. Source: [3].

 9

a. Physical Layer

The physical layer describes the physical medium on which data signals are

actually transmitted. This medium is the underlying architecture of any connected

network and it is on this layer that raw digital or analogue traffic transits from one node

to the next. While there can be some information gleaned from this raw data, analysis of

transmissions on the physical layer is outside of the scope of this thesis. However, the

actual capture of network traffic requires some attachment to the physical layer by which

the upper layer information is extracted. This thesis assumes such access is available.

b. Data Link Layer

The data link layer is the first layer above the physical layer and it describes how

individual pieces of hardware encapsulate data before the actual bits are transmitted to

the next node. Data to be transmitted is grouped into protocol data units called frames and

encapsulated with header and trailer metadata, allowing devices to determine the next-

hop destination of the frame and take action accordingly. The device hardware address, a

globally unique identifying number for a network interface, is included in this metadata

[4]. The section of a network in which devices can communicate directly with each other

via the data link layer is referred to as a broadcast domain. The hardware address is

carried on all frames of traffic within a single broadcast domain only and is not translated

or transferred when a packet transits through a router to another broadcast domain. This

localization of the hardware address is a key piece of information that can be used to

classify network traffic and identify connected devices during analysis.

c. Network Layer

The network layer contains valuable information for determining the logical

topology and layout of a network. Here, frames are encapsulated with more metadata that

includes information about the logical addressing scheme, most commonly the Internet

Protocol (IP). Logical addressing allows traffic to be routed across broadcast domains

and is an important detail of a LAN’s topology, with each device requiring a unique

logical address in order to send and receive traffic correctly. In-depth information

regarding the allocation of addresses among routers and hosts is vital to gaining a

 10

complete understanding of the network. Knowledge of a subnet allows us to classify

which hosts are a part of the network and make a determination about how many

broadcast domains exist.

Routers use manually or automatically configured routing tables to forward each

packet to the next hop (egress point of the connected broadcast domain) within a route

from a source to destination. The range of possible IP addresses is sub-divided and

allocated across all users of the Internet. Additionally, private IP ranges can be utilized

within LANs, as defined by Request for Comments (RFC) 1918 [5], though they must

undergo an address translation before traffic from the LAN can be routed outside of that

LAN. Every broadcast domain is represented by a single subnet, or subdivision of IP

addresses.

For the purposes of this research, we characterize groups of IP addresses (subnets)

using the Classless Inter-Domain Routing (CIDR) scheme and identify a subnet by its

subnet address and subnet mask [6]. The subnet address is the first IP address in the range

allocated for that subnet. The subnet mask is a bit string that delineates which bits in an

address designate the network and which designate a host, as depicted in Figure 4. Note

that this bit string is a set of left-justified 1-bits corresponding to the significant bits of the

address that represent the network, with the remaining bits of the string set to “0,”

corresponding to the bits that form the unique identified for the entities connected to the

subnet. Thus, all IP addresses in a single subnet will have the same network bits in the

address. Given a particular IP address and the subnet scheme, we can determine to which

broadcast domain the IP address belongs [6].

 11

Figure 4. Example Subnet Addressing Using CIDR Notation. Source: [7].

d. Transport Layer

The physical, data link, and network layers are similar in that they are all involved

in the actual delivery of data from one node on the network to another. Conversely, the

session, presentation, and application layers are where data is actually generated [8]. The

transport layer handles the transition from the upper layers to the lower layers with the

chief function of managing application data and preparing it for exchange between the

communicating application entities. Additionally, as incoming data is received from the

network layer, services running on the transport layer manage forwarding that data to the

appropriate application. This allows for many applications and services to run on the

same computer at once with a single network connection.

e. Application-Level Layers

Beyond the transport layer are the session, presentation, and application layers.

These layers are similar in that they all involve the actual generation and representation

of data. For the purpose of this thesis, we refer to these layers as a single group, called the

application-level layers. These layers are generally decoupled from the actual act of

transmitting data on the network, which is handled by the bottom three layers. However,

 12

this data, referred to as the payload, is still visible on the network, and it is the reason for

the traffic in the first place. While the payload usually does not contain network specific

information, some applications provide functionality for network establishment and

management, such as routing protocols like Border Gateway Protocol. Analysis of these

packet payloads can yield an abundance of information about the devices connected to

the network, adding to our depth of understanding of the topology.

2. Internet Protocol Suite

While often referred to as a reference model as well, the IP Suite is the most

commonly used collection of standards and protocols pertinent to transfer of data

between networking domains. It was, and continues to be, developed and maintained by

the Internet Engineering Task Force (IETF) to facilitate consistency across system and

application developers. These protocols and standards are explicitly applicable for

functionalities above what the OSI Reference Model identifies as Physical and Data Link

Layer functions (see Figure 5). Protocol specifications are published via RFCs and are

continually updated to ensure completeness and security of protocols in an evolving

network community [9]. These protocols are typically implemented by the various

operating systems installed on the networked devices and hosts. IP and the Transmission

Control Protocol (TCP) are the most commonly used protocols in the set, and therefore

the IP Suite is also frequently referred to as the TCP/IP Suite. Payload and header

information from the packets of some of these protocols provide the necessary

information to map the topology of a network.

 13

Figure 5. OSI Reference Model and the IP Suite Comparison. Source: [10].

a. Address Resolution Protocol

Address Resolution Protocol (ARP) is used by network devices to correlate a

hardware address to the corresponding logical address for a given device. Most

commonly, it allows devices to map Media Access Control (MAC) addresses to IP

addresses. ARP technically operates to support the network layer, but packets do not

cross over broadcast domains. Primary ARP messages are the ARP Request by which a

device issues a query for a MAC address correlating to a specific IP address and the ARP

Reply response from the queried device. The layout of individual data fields within an

ARP packet is detailed in Figure 6 [11]. Note that the destination layer 3 address is the

network address (e.g., IP) for which the layer 2 address is required and the destination

layer 2 address in the query is the layer 2 broadcast address. For networks employing the

Institute of Electrical and Electronics Engineers protocols, the layer 2 broadcat address is

48 bits, all ones (i.e., 0xFF:FF:FF:FF:FF:FF in hexadecimal format, colons added for

clarity only).

 14

Figure 6. ARP Packet Data Fields. Source: [11].

b. Internet Protocol

IP is the most commonly used protocol for assigning logical addresses to network

layer devices. The information available in an IPv4 header can be very useful for

mapping network topology. IPv4 and IPv6 headers differ slightly, and for the purposes of

this thesis we will investigate IPv4 packets only. The overall structure of the IPv4 packet

header is shown in Figure 7. Some of the useful fields in the IP header are protocol,

source, and destination addresses. The protocol field contains the identifier for next layer

protocol used in the data portion of the IP packet, normally the transport layer protocol,

although as indicated by Figure 5 and Figure 7, it could be ARP, Internet Control

Message Protocol (ICMP), or another protocol operating directly on top of IP. This

information is necessary to determine how to handle the packet at the destination and

how to decode the encapsulated data. Source and destination addresses are the sender and

receiver of the packet. These addresses do not change for the life of the packet and

remain intact as the data transits across broadcast domains [12].

 15

Figure 7. IPv4 Packet Header Data Fields. Source: [13].

c. Internet Control Message Protocol

ICMP is a messaging protocol used to notify network devices that a problem

occurred while a packet was in transit. Additionally, it is a mechanism to send network-

related control messages that can be used for diagnostic purposes. ICMP header fields,

shown in Figure 8, are type, code, and checksum, followed by a four-byte section that

varies depending on type and code. For error messages, the data section of an ICMP

packet contains a copy of the IPv4 header for the packet that caused the error, along with

the first eight bytes of data from the original packet. The entire ICMP packet is then

encapsulated in a new IPv4 header for proper routing to the intended recipient of the error

message.

16

Figure 8. ICMP Packet Header Data Fields. Source: [13].

Echo request and echo reply packets perform a function commonly referred to as

a ping, a diagnostic tool in which one device sends a short request for response to a

remote device. The remote device issues an echo reply. This ping functionality can be

used to test proper network connectivity and latency between devices.

The destination unreachable error message is generated either at the end device,

the last-hop router before that end device, or by a router that does not have a path to the

destination network. This error is generated in response to a destination port, device, or

network being unreachable. This functionality is useful for probing a network for the

existence of a particular device or for scanning a device to determine which ports are

open [14].

d. Transmission Control Protocol

TCP is a transport-layer protocol that provides for the connection-based transfer

of data between two networked devices. The TCP header, shown in Figure 9,

encapsulates the application data [15]. TCP correlates to the transport and session layers

of the OSI Model with the primary purpose of establishing a host-to-host connection

between two networked devices. Once this connection is established, the functionality of

TCP handles such tasks as the detection of data loss, coordination for the retransmission

 17

of packets, re-ordering packets that arrive out-of-order, and governing the rate at which

packets are transmitted over the connection [15]. In doing so, TCP provides reliable data

transfer by ensuring that packets arrive at the intended recipient.

Figure 9. TCP Packet Header Data Fields. Source: [13].

The functionality of TCP allows for the decoupling of the protocols that operate at

the application layer from the specific details of actually reliably exchanging data over

the network. Additionally, TCP’s use of stream sockets to establish these host-to-host

connections allows for multiple connections to be active on the same device at once.

C. EXISTING TOOLS AND RESOURCES

It is clear that there is an abundance of information available in the data packets

flowing over a network. The process of extracting this data into meaningful results is

tedious and must be automated. As discussed by McBride in chapter II, section C, of his

 18

thesis [1], there are many publicly available tools that allow network administrators to

monitor network traffic and conduct manual analysis. The functionality of these tools can

be leveraged in an all-inclusive program that will allow a user to automatically scan and

verify a network. Representing the network itself in a succinct manner presents a

different challenge. A generally accepted practice is to represent a network as a graph: a

series of vertices and connecting edges. The vertices represent devices on the network

and the edges represent connections between individual devices. Fortunately, there exist

programming libraries and markup languages that provide functionality for the storage,

manipulation, and visualization of a network graph. This thesis focuses on three existing

tools that provide functionality to scan and analyze network traffic, visualize and

manipulate the data available, and store the data for later use by other modules within the

MAVNATT system.

1. NMap Security Scanner

The NMap Security Scanner is a comprehensive open-source tool that provides

functionality for active network traffic analysis and security auditing [13]. It is available

as a command-line tool or in a graphical user interface for Linux, MAC OS X, and

Windows operating systems. NMap boasts an extensive service set with more than

100 command-line options that include host discovery, remote host operating system

(OS) detection, port scanning, service and application version detection, and firewall

detection [13]. The tool provides multiple options for output of results, which can be

parsed easily or formatted into a human-readable form (see Figure 10).

 19

Notable data includes name to IP address resolution, significant open ports, and candidate
OS based on fingerprinting techniques.

Figure 10. Example Output of an NMap Scan on a Remote Host.

While a complete understanding of all available NMap operations requires

extensive experience with the tool, the ability to quickly and accurately scan a network

for mapping purposes can be achieved with a few basic commands [13]:

 NMap default functionality: Scans can be conducted on individual hosts,
IP ranges, or entire subnets using CIDR notation, as exemplified below,
respectively. NMAP checks to see if the host is up, then conducts a scan
on ports 1-1000 to determine which ports of those are open [13].

 nmap 192.168.1.1,192.168.1.2
 nmap 192.168.1.1-30
 nmap 192.168.1.0/24

 Host discovery (-sn): Omit the port scan and only return those hosts that
are detected [13].

 nmap –sn 192.168.1.0/24

 Remote OS detection (-O): NMap maintains an internal database of
fingerprints based on how different systems respond to TCP/IP probes.
This tool compares received results to determine a potential OS match
[13].

 nmap –O 192.168.1.0/24

 ARP Scan (-PR): Sends an ARP Request message vice ICMP or other IP
based probe. This facilitates quicker scanning on LANs, especially those
that are sparsely populated with hosts. NMap automatically recognizes if a

 20

host address is on the same subnet as the local host from which the scan is
conducted and defaults to the ARP scan [13].

 nmap –PR 192.168.1.0/24

 Exclude addresses (--exclude): Scan all hosts on the given subnet or
address list except those listed in the exclusion list [13].

 nmap 192.168.1.0/24 --exclude 192.168.1.1

 Traceroute (--traceroute): Displays additional information about the
route from the local machine to the remote host, including the IP address
of each intermediate hop and timing information [13].

 nmap 192.168.1.1 --traceroute

These standard commands can be combined or used individually to retrieve

enough information necessary to derive the topology layout of a LAN along with

configurations and details of devices on the network.

2. Java Universal Network/Graph Framework

The Java Universal Network/Graph (JUNG) Framework is a collection of open-

source Java libraries that provide functionality for manipulating information represented

as a network graph. Created by three PhD students at the University of California, Irvine,

the project has been continually revised and updated since 2003 [16]. The nature of

computer networks makes JUNG an excellent tool for visualizing the network topology.

Using the visualization library, we can display a graphical representation of the vertices

and edges in a network (see Figure 11). Features of the library include functionality for

labeling graph elements, changing the color, shape, and size of vertices and edges, and

manipulating the position of graph elements via mouse [17]. Additionally, JUNG

includes several pre-defined algorithms that automatically determine the position at

which to draw each graph element, providing a clean display for easy viewing.

The underlying infrastructure of JUNG permits full customization of the data used

to represent vertices and edges in a graph. This allows for the creation of custom objects

that can be used to store all necessary information about network devices such as routers,

switches and clients. These custom objects can then be set as the graph vertices, with

connection information stored in custom graph edge objects.

21

Figure 11. Sample Graph Display Using the JUNG
Visualization Library. Source: [17].

A key component of the JUNG functionality is the Transformer interface, which

allows the user to set or retrieve information stored within the vertex and edge objects

during runtime. This is done by defining a class implementation of the Transformer

interface for each necessary task [17]. The defined class conducts a mapping from one

object to another. In this manner, the Transformer can change the display characteristics

of the object based on the values of each vertex or edge. The code snippet shown in

Figure 12 is an example Transformer implementation that dynamically colors a graph

edge based on the status of the object used to represent that edge.

22

This Transformer class maps a Paint object (Color) to an Edge object based on the status
of the Edge.

Figure 12. Example JUNG Transformer Implementation.

3. GraphML File Format

The GraphML file format is a markup language designed to efficiently represent

the topology of a network graph, allowing data to be saved for later use via import and

export operations [18]. Derived from the Extensible Markup Language (XML) [19],

GraphML uses start and end tags to declare the different components of a graph. Empty

tags may be used when declaring an element that has no content. Attributes for the

individual components can be defined within the start tag of the component. Additionally,

GraphML allows for the storage of data on nodes and edges by defining custom attributes

of primitive data types. Key components of a GraphML file are:

 Header: XML version and schema information used to interpret and
validate the file format. Schema details are listed inside the GraphML start
tag. The remainder of declarations of the file are nested in the content
section between the GraphML start and end tags [18].

<?xml version="1.0" encoding="UTF-8"?>
<graphml xmlns=http://graphml.graphdrawing.org/xmlns>
...
</graphml>

 23

 Graph: The graph itself. An edge default attribute of directed, undirected,
or mixed must be defined [18].

 <graph id="Simple Graph" edgedefault="undirected">
 ...
 </graph>

 Node: A vertex in the graph. A unique identifier must be defined for each
node. Node declarations are nested in the graph content section [18].

 <node id="n1"/>
 <node id="n2"/>

 Edge: An edge between two nodes in the graph. Source and target nodes
must be defined for each edge. Edge declarations are nested in the graph
content section [18].

 <edge source="n1" target="n2"/>

 Custom Attributes: Custom attributes are declared outside of the graph
element using the key tag, while values for those attributes can be set for
individual components within their respective content sections using the
data tag. Custom attributes have their own attributes of identifier, name,
type, and domain that are defined inside the start tag of the attribute
declaration. Finally, a default value can be declared for custom attributes
[18].

 <key id="d0" for="node" attr.name="x" attr.type="int">
 <key id="d1" for="node" attr.name="y" attr.type="int">
 ...
 <node id="n1">
 <data key="d0">50</data>
 <data key="d1">100</data>
 </node>

The network graph shown in Figure 11 can be represented in a very simple

manner by declaring custom attributes and setting their appropriate values for

components in the network (see Figure 13). While networks can be succinctly defined

using the GraphML file format, there is no default application for reading and displaying

a graph defined in GraphML. Implementation is left to the user and can be accomplished

using open source libraries such as JUNG or other XML parsing methods.

 24

Figure 13. GraphML Representation of the Network Graph Shown in Figure 11.

D. SUMMARY

This chapter discussed the format, availability, and flow of data on a LAN, as

well as some proven methodologies for extracting and using that data to represent the

topology of the network. Fundamental objectives of a topology mapping application are

algorithmic analysis of the available data, accurate representation of the network, and a

user-friendly interface for visualization and verification of the network plan. The

resources described in this chapter can be leveraged to compose an automated application

for scanning and visualizing network topology.

 25

III. DESIGN AND IMPLEMENTATION

A. APPLICATION DESCRIPTION

The goal of this thesis is to develop an application for use by network

professionals with administrative oversight over LANs such as those employed at the

tactical or small unit level. Key functional points of the application would allow the user

to import a proposed network plan, verify the plan, scan the live network based on

expected values, and output results in a succinct and readable manner. This would allow

the network administrator to accurately represent a network, both planned and actual, in

order to produce a virtualized replica of the LAN for use in training scenarios. This

application represents the mapping portion of the proposed MAVNATT system [1].

The mapping application was written in Java Standard Edition version 8 using the

Java Development Kit with Netbeans 8.1 Integrated Development Environment [20]. The

program employs JUNG libraries [16] to manipulate and visualize the network, and

NMap [13] to scan the live network. Output of the program can be saved as a human-

readable text file or as a GraphML [18] file for import and export operations. The

application was written on a Windows 10 platform and compiled with all external

libraries and dependencies. This allows the application to run on any operating system,

provided that Java and NMap are installed on that platform.

B. OBJECT-ORIENTED FRAMEWORK

We chose to take an object-oriented programming approach for application

development. This allowed us to create a framework to represent a network via custom

data structures which fit our needs of representing specific data points within the

network, as well as the complicated relational interactions between network entities.

Additionally, an object-oriented approach allowed us to fully leverage the portability

provided by the programming environment, removing dependencies on platform-specific

native data sets. In this thesis, we describe each custom object using the Unified

Modeling Language (UML) [21]. For brevity, the UML diagrams in this section only

include key data fields and methods within each object, omitting common methods such

 26

as toString() methods and attribute getters and setters. The complete UML diagram for

the network framework can be seen in Appendix A.

1. Interface and SwitchInterface Objects

The Interface object (Figure 14) represents the foundational component of a

network. Individual devices connect to a live network using a network interface card

(NIC) and point-to-point connections are from one NIC to another. The Interface fields

are used to characterize the object and its status on the network. Two Interface objects are

considered to be equal if they share either the same MAC address or the same IPv4

address.

Figure 14. UML Diagram for Interface Object.

The SwitchInterface object (Figure 15) extends the Interface object and is used to

represent a port on a layer 2 switch. The key distinction is that a layer 2 switch port is

transparent on the network, without an IPv4 address or MAC address. We identify a

SwitchInterface by the name of the switch to which it belongs and a unique numeric

identifier. Two SwitchInterface objects are considered equal if they have the same switch

name and unique identifier.

 27

Figure 15. UML Diagram for SwitchInterface Object.

2. Node Object

The Node object (Figure 16) is used to represent any physical device on the

network: router, switch, hub, computer, printer, etc. Each Node maintains a set of

Interface objects, allowing correct representation of multiple network connections for a

single device (e.g., routers). The merge() method can be used to combine two Node

objects. Two Node objects are considered equal if they have the same name or share at

least one Interface.

Figure 16. UML Diagram for Node Object.

 28

3. Edge Object

The Edge object (Figure 17) is used to represent a connection between two

Interfaces. Two Edge objects are considered equal if both represent the same two

Interface endpoints.

Figure 17. UML Diagram for Edge Object.

4. Subnet Object

The Subnet object (Figure 18) is used to represent a subnet address. It provides

functionality to determine whether a given IPv4 address is a part of the subnet. Two

Subnet objects are considered equal if they have the same subnet address and subnet

mask. The netIDsEqual() method can be used to determine whether two different subnets

have the same subnet address, indicating a potential error in the subnet allocation scheme.

Figure 18. UML Diagram for Subnet Object.

 29

5. Status and Device Enumerations

The Status Enumeration (Figure 19) is used throughout the framework as a

flagging mechanism for Interfaces, Edges, and Nodes. These flags are used when

scanning the live network and comparing found results with expected results. Status is

also used to determine which color to make the entity during visualization. Definitions of

the individual Status flags are:

 PLANNED (blue): This entity is represented on the network plan.

 CONFIRMED (green): This entity was confirmed during the live
network scan with details matching those represented on the network plan.

 MISSING (orange): This entity is on the network plan, but was not found
during the scan of the live network.

 INCORRECT (yellow): This entity was found during the live network
scan, but some data discovered for the actual device conflicts with that
represented on the network plan.

 UNPLANNED (red): This entity is not represented on the network plan,
but was discovered during a scan of the live network.

 UNKNOWN (brown): This entity is represented on the network plan, but
there was not enough information available during the live network scan
to make a status determination.

Figure 19. UML Diagram for Status Enumeration.

The Device Enumeration (Figure 20) is used to specify the type of physical device

represented by a Node object. This information is used when visualizing the network and

when generating a GraphML file for later virtualization. The format of the Device

 30

enumeration facilitates easy expansion or modification of device types in future

implementations.

Figure 20. UML Diagram for Device Enumeration.

6. Network Object

The Network object (Figure 21) is used to bring all of the objects in the

framework together. Individual fields track the Nodes, Edges, and Subnets that comprise

the Network, as well as a mapping from Interfaces to Nodes. Individual methods provide

functionality for adding Nodes and Edges to the Network, merging two Networks

together, retrieving specific Nodes and Interfaces based on defining details, and

converting the Network to a graph for use by the JUNG libraries. Two Network objects

are considered equal only if they have the same set of Nodes, Edges, and Node-to-

Interface mapping.

 31

Figure 21. UML Diagram for Network Object.

C. PROGRAM FLOW OF EXECUTION

Using the framework described in Section B above, we developed an application

that algorithmically scans a live network and provides results by comparing the

discovered topology to that of the planned network. The flow of execution for the

program starts with manual generation of a network plan, visualization of that plan, a live

network scan with visualization of results, and functionality to store and print results in

different formats.

1. Network Plan Generation

The very first step in the establishment of any computer network is the

development of a network plan. This is the necessary starting point and requires manual

planning by the network administrator to determine defining characteristics of the

network such as overall layout and topology, details of connected devices, logical address

allocation, and security controls in place. While developing a format for the network

plan, our primary goal was to represent all necessary entities in a succinct but complete

manner while still being easy to use and read. A secondary goal was to make the plan as

simple as possible, without reliance on complex database structures or external tracking

systems, as the network plan would need to be flattened to a text file to facilitate import

and parsing into our application. The resulting network plan format shown in Figure 22

uses XML-style tags to separate sections of the plan, each with information relevant to

 32

that network entity. The plan is generated in Microsoft Excel and saved as an .xlsx file

type. This allows for the creation of a succinct yet detailed plan that can be exported to a

text file for later parsing.

Figure 22. Example Network Plan Format.

Clarification of the network plan sections:

 <NETWORKS>: This section is used to list all subnets that will comprise
the LAN in CIDR notation, one per row.

 <ROUTERS>: This section is used to list all routers on the LAN. Each
interface on a router must be declared on a separate row, allowing for
multiple interfaces on the same device. The “Next Hop” column is used to
identify a physical connection within the network and should represent the
address of the interface to which this interface is physically connected.
The name of any switch devices listed as next hop connections must
exactly match a switch name listed in the <LAYER 2 SWITCHES>
section.

 <HOSTS AND CLIENT DEVICES>: Similar to the <ROUTERS>
section, this section lists all client devices on the network, one interface
per row. The “Device Type” column is a dropdown menu that provides

 33

possible options. This field is used to select an icon for the device during
visualization.

 <LAYER 2 SWITCHES>: Any layer 2 switch with connections on the
network must be listed in this section, one per row. Switch names listed in
the “Next Hop” column of the previous two sections must exactly match at
least one switch name listed in this section.

 <IMAGE FILES>: Primarily for future use when integrating the
MAVNATT mapping module with the virtualization module, this section
allows the network administrator to list the OS type and the location of
virtual machine image files for specific network entities. This data is
stored on the Node object and can be used to instantiate virtual machines
of the given type.

After completion of the network plan, it can be exported as a comma-separated

values (CSV) file type. This provides the file flattening required to import and parse the

plan for use in the mapping application. This network plan serves as the expected value

against which the live network scan results can be compared. Appendix B shows a CSV

version of the network plan shown in Figure 22.

2. Network Plan Import and Visualization

The network plan is created manually, independent of the mapping application.

The exported CSV file then serves as the starting point for the application, with file

import being the only option upon startup, via the “Import Network Plan” button. After

import, the console displays a log (see Figure 23), which reflects progress as the plan is

parsed and individual objects are created within the network framework as described in

Chapter III, Section B. Potential problems identified while parsing the network plan are

displayed in the log as well. This provides the network administrator an opportunity to

identify mistakes in the plan.

 34

The application parses each section of the network plan sequentially and displays a
progress log. Updates are displayed as objects are created within the network framework,
or when potential problems are identified.

Figure 23. Import Log After Parsing the Network Plan Shown in Figure 22.

Upon successful completion of the network plan import, the application

automatically displays a visualization of the planned network (see Figure 24). This

provides the network administrator another tool with which he can verify the plan and

identify any potential problems in the proposed configuration. The network is displayed

as a graph using the JUNG libraries [16]. Each device is represented by a corresponding

 35

icon, with edges of the graph representing physical connections between devices. The

blue icons in the display indicate that this is the planned network and the status variable

of each Node, Edge, and Interface object is set to “PLANNED.”

Figure 24. Visualization after Parsing the Network Plan Shown in Figure 22.

3. Live Network Scan and Visualization

At this point of the application execution phase, the planned network is stored in

memory as a Network object according to the object-oriented framework described in

Chapter III, Section B. Here, the user can scan the live network to detect configuration

and settings of connected devices. The live network scan is a sequential process using

bounds established by the planned network, which serves as the expected value against

which results are compared. Any variation between the planned network and discovered

results is annotated and displayed. The scan is initiated via the menu bar in the graph

visualization window by selecting the Scan > Scan Live Network option. This displays a

new empty console with one available option, the “Start Scan” button.

 36

a. Preparation

The application starts by making a deep copy of the planned network. During this

process, the status variable of each Node, Edge, and Interface object is set to

“UNKNOWN.” This process is transparent to the user and facilitates status updates on

individual network entities as settings are confirmed or found to be invalid. The planned

network is left intact and this new Network object, referred to as the result network, is

now the working copy for the live network scan.

b. Detect Local Host Settings

In the initial verification step, the application determines the settings for the local

host on which the mapping application is being executed. Once the local IP address and

MAC address are determined, the application searches the result network for the

corresponding Interface object with matching details. Details of the local host are

displayed to the scan report console (see Figure 25) along with any inconsistencies

discovered. This identification of the local host provides the application with necessary

information to conduct a more fine-grained verification of other devices on the same

subnet, as this is the only scenario when the MAC address of remote devices is visible

to the mapping application. The status variable for the discovered Interface is set

accordingly.

 37

Figure 25. Example Scan Report Console Output.

c. Scan Planned Devices

At this stage, the application iterates through each Interface object in the result

network. For those Interfaces with an IP address defined (i.e., not SwitchInterface

objects), the application conducts the following NMap scan, where [IP ADDRESS] is the

IP address of the current Interface being verified.

nmap -F -O --osscan-limit --max-os-tries 1 [IP ADDRESS]

This NMap scan is executed in a background process and the output is redirected

to the mapping application where it is parsed. If a host is detected at the given IP address,

 38

a parsing function uses regular expressions to extract the IP address, MAC address (if

present), and potential OS of the host from the NMAP scan report. This data is used to

verify the details of the expected Interface object and the status variable for the Interface

is set accordingly. As data is parsed, log messages are displayed to the scan report

console, as shown in Figure 25, and changes to each Interface in the result network are

made according to the following criteria:

 Interfaces on the same subnet as the local host are labeled
“CONFIRMED” if the discovered IP address and MAC address match
expected values.

 Interfaces on the same subnet as the local host are labeled “INCORRECT”
if the discovered MAC address differs from the expected value.

 Interfaces on remote subnets are marked “CONFIRMED” if their IP
address alone matches its expected value.

 Any status change made to an Interface is also made to the Node object to
which that Interface belongs.

 If the NMap scan returns a single potential OS match for the scanned host,
the Node object to which the Interface belongs is automatically updated to
reflect the discovered value.

 If no corresponding host is found via the NMap scan, no action is taken at
this time.

After scanning for all Interface objects, the mapping application will rescan for all

Interfaces in the result network that still have a status of “UNKNOWN,” meaning they

were not detected on the first attempt. If NMap again fails to locate a host at the given IP

address, the status variable for the given Interface is set to “MISSING.” The status of any

Node object with all Interfaces set as “MISSING” is set to “MISSING” as well. If a Node

has at least one missing Interface and at least one that was detected during the NMap

scan, the status for that Node is set to “INCORRECT.”

d. Scan for Unplanned Devices

After scanning for all expected devices, the mapping application scans the known

subnets for any device present that is not on the network plan. To do so, the application

executes the following NMap scan, where [SUBNETS] is a list of all subnets from the

 39

planned network and [ADDRESSES] is a list of all IP addresses of Interfaces from the

planned network.

nmap –sn [SUBNETS] --exclude [ADDRESSES]

If an unexpected device is found, the NMap results are parsed for IP address and

MAC address (if present) using regular expressions. These addresses are used to create

new Interface and Node objects with the status variable set to “UNPLANNED.” The new

Node with corresponding Interface are then added to the result network, allowing them to

be displayed later.

e. Analyze Network Connections

Checking the status of the connections in the network to complete the comparison

between the live network scan results and the expected value required that we make some

inferences. The layer 2 switch is transparent on the network, making it impossible to scan

for the existence of specific switch ports. Instead, the application counts the number of

discovered IP addresses on each subnet. If there are more than two addresses on a given

subnet, then all connections must be going through a switch or hub. Changes to each

Edge in the result network are made according to the following criteria:

 If one endpoint is an Interface with an IP address on a subnet with more
than two IP addresses present, the other endpoint must be a
SwitchInterface. If the Edge meets this criteria, its status is set to
“CONFIRMED.” Otherwise, it is set to “INCORRECT.”

 If one endpoint Interface is marked as “MISSING,” the Edge status is set
to “MISSING.”

 If both endpoints are Interfaces with IP addresses on the same subnet, and
the number of IP addresses present is exactly two, the Edge status is set to
“CONFIRMED.”

 At no time is any new Edge object created and added to the result
network.

4. Results Output

Upon completion of the network scan, the application presents several methods to

view and save the results. As shown in Figure 25, the user is given options to display the

 40

network graph or save the network details. The “Display Network Graph” button shows a

visualization of the live network scan results (see Figure 26). Nodes and Edges in the

display are color coded according the status variable for the given object. This provides

the network administrator with an overview of the network configuration that allows for

quick identification of potential problems.

In this example, all interfaces on all devices have been confirmed by the network scan.
All connections meet the confirmation criteria. The layer 2 switches maintain a status of
UNKNOWN.

Figure 26. Visualization of Live Network Scan Results.

The “Save Network Details” option allows the user to save a textual

representation of the live network scan results. Appendix C is the detailed log file for the

live network scan shown in Figure 26.

Finally, the user has the option to save a graph representation of a network, either

planned or actual scan results, as a GraphML file. This is accomplished via the File >

Save as GraphML option from any network visualization window.

 41

D. SUMMARY

This chapter details the internal structure of the MAVNATT mapping application

as well as the program flow of execution. The established data structures in the network

framework allow for extensibility and future development. Additional data fields can be

added to individual object types without disrupting the relational interaction between

each object within the framework, allowing for finer granularity of details of connected

devices. The program flow of execution allows the network administrator to visualize a

proposed network plan and quickly identify potential problems. Similarly, the available

output options of a live network scan allow the user to easily identify conflicts between

the planned network and actual results. This functionality facilitates network

configuration troubleshooting and identification of potential problems or threats to the

network. Finally, the ability to export displayed networks as a GraphML file facilitates

the virtualization of any network, either planned or actual, via the virtualization portion

of the MAVNATT system.

 42

THIS PAGE INTENTIONALLY LEFT BLANK

 43

IV. TESTING AND EVALUATION

A. OVERVIEW OF TESTING

We focused testing efforts on the two primary functions for the mapping

application: correct validation of the network plan, and accurate scanning of the live

network. To do so, we established a physical test network environment for use while

evaluating the live network scan functionality of the application. We then generated

different versions of a network plan, each representing this test network. Variations in

these network plan versions created specific scenarios that allowed us to test individual

sources of potential errors in the mapping application.

B. TEST NETWORK ENVIRONMENT

For consistency and controlled variability during network scanning, we

established a test network environment with physical hardware similar to that used by

Marine Corps units on LANs. The network consisted of five Cisco 2811 routers, two

Cisco 1900 series layer 2 switches, six client computers and a server computer (see

Figure 27). The routers were configured using the Enhanced Interior Gateway Routing

Protocol. Five of the client computers were loaded with the Ubuntu version 14.04 OS and

the sixth (Client3) was loaded with Windows 10. The server computer was configured as

both a Domain Name System (DNS) server and a web server on the Ubuntu 14.04 OS.

Scripts running on all six client computers were used to conduct periodic DNS queries

and to request pages from the web server. These scripts generated a steady flow of traffic

and provided a more realistic network scenario.

 44

Figure 27. Test Network Environment Configuration.

C. TEST NETWORK PLANS AND CONFIGURATIONS

We generated four variations of the network plan representing the test network

environment. Each variation was designed to test key functional points of the mapping

application by forcing errors that would then be annotated by the application. For brevity,

the image file details for each networked device were omitted from network plans during

testing. These details are only relevant for later use within the overall MAVNATT

framework. The complete network plan used for each test scenario can be found in

Appendix D through Appendix G.

 45

1. Control Configuration

The control configuration network plan (see Appendix D) accurately reflects the

actual configuration of the test network shown in Figure 27. Each networked device is

correctly represented with its corresponding IP address, MAC address, and next-hop

connection. The subnet allocation scheme is valid and all subnets are properly

represented on the plan. After importing the network plan, the parse log (see Figure 28)

shows no indication of any potential problems.

Figure 28. Control Configuration Network Plan Parse Log.

After conducting the scan of the live network, both the network plan visualization

and the live network scan visualization (see Figure 29) match expectations of the test

 46

network configuration. All devices on the network are present with details confirmed

according to the criteria described in Chapter III, Section C.

Comparison of the network plan visualization (left) and the live network scan
visualization (right) shows consistency in results based on the expected value.

Figure 29. Control Configuration Visualizations.

2. Invalid Network Plan Testing

We developed an invalid network plan (see Appendix E) to test the validation and

visualization of the network plan. Inconsistencies and errors were introduced to the

plan to test whether the mapping application correctly identified the errors and conveyed

the details to the user. These errors represent common mistakes made by network

administrators such as typographic errors, incorrect subnet and IP address allocation, or

simply misrepresenting the expected configuration in the network plan. The invalid

network plan contains the following errors:

 Subnet 192.168.0.212/30 is incorrectly entered as 192.168.0.2122/30, a
potential typographic error.

 The next hop address for R3 interface fa0/1 is listed as 192.168.0.211
where it should be 192.168.0.209. The IP address 192.168.0.211 does not
exist on the network. This error could be the result of incorrect subnet
calculation or simply swapping potential values on the plan.

 The next hop address for R3 interface fa0/0/0 is listed as Switch 3, but no
Switch 3 exists on the network.

 47

After importing the network plan, the parse log (see Figure 30) correctly displays

a problem with the invalid subnet 192.168.0.2122/30. This subnet is therefore never

created within the network framework. Additionally, error messages are reported when

adding the interfaces with addresses 192.168.0.213 and 192.168.0.214, because no valid

subnet is found that contains these addresses.

Figure 30. Invalid Network Plan Parse Log.

The network plan visualization (see Figure 31) correctly shows that the expected

connections between R2 and R3, and between R3 and Switch 2 are missing. These

 48

inconsistencies provide a cue for the network administrator to review his plan for

potential errors with these connection settings.

Figure 31. Invalid Network Plan Visualization.

3. Incorrect Network Details Testing

We developed an incorrect network plan (see Appendix F) to test the live network

scan functionality of the mapping application. The plan lists incorrect details for some

devices on the network to test whether the application correctly identified deviations

between the network plan and the live network and conveyed the details of errors to the

user. The errors in this test are limited to incorrect MAC addresses and IP addresses for

interfaces on the network. The incorrect network plan contains the following errors:

 The next hop address for R3 interface fa0/1 is listed as 192.168.0.211
where it should be 192.168.0.209.

 The IP address for the Client3 interface is listed as 192.168.0.33 instead of
the correct value of 192.168.0.30. We ran the mapping application from
Client3, so this error affects the details of the local host.

 49

 The MAC address for the Client2 interface is listed as C8:1F:66:07:0F:1E
instead of the correct value of C8:1F:66:07:0F:1D.

 The IP address for the Client5 interface is listed as 192.168.0.88 instead of
the correct value of 192.168.0.80.

 The MAC address for the Printer2 interface is listed as 00:15:99:D5:5D:33
instead of the correct value of 00:15:99:D5:5D:34.

After importing the incorrect network plan, we scanned the live network,

producing the scan console log output shown in Figure 32.

Figure 32. Incorrect Network Details Scan Log.

The scan console log correctly annotates the following conflicts:

 The application identified a local host addressing conflict. The local host
IP was identified as 192.168.0.30, but there is no interface with a
corresponding address represented on the network plan. A new Node is
created to represent the actual local host.

 The application discovered a host at Client2’s expected IP address, but
with a MAC address that is not the expected value represented on the
network plan. This IP address is on the same subnet as the local host,
making MAC address verification possible. The status of Client2 is set as
“INCORRECT.”

 50

 The application failed to locate any device at IP address 192.168.0.33, so
the status of Client3 is set to “MISSING.”

 The application failed to locate any device at IP address 192.168.0.88, so
the status of Client5 is set to “MISSING.”

 The application discovered an unexpected device at IP address
192.168.0.80. This is the actual address of Client5. A new Node object is
created and added to the network to represent the unexpected device.

The visualizations of the planned network and the live network scan results (see

Figure 33) reflect the errors annotated in the scan console log. A new Node object with

the correct values of the local host is added to the network, represented in yellow. Client2

is yellow to denote the incorrect MAC address. Client3 and Client5 are orange to

represent that they are on the network plan, but were not found during the live network

scan. A newly discovered device (the actual Client5) is shown in red. Additionally, the

expected connection between R2 and R3 is again missing, which represents the incorrect

value given for the next hop destination of R3 interface fa0/0/0. This connection actually

exists on the network but the mapping application has no way to detect or verify it.

Comparison of the network plan visualization (left) and the live network scan
visualization (right) shows several discrepancies.

Figure 33. Incorrect Network Details Visualizations.

 51

A notable point in this result is that Printer2 is green and listed as confirmed, even

though the MAC address was listed incorrectly in the network plan. This is the expected

behavior of the application. The live network scan was conducted from Client3, on a

different subnet than Printer2. The mapping application has no access to the MAC

addresses of devices on remote subnets and therefore confirms remote devices by

matching IP addresses only.

4. Invalid Network Configuration Testing

For the final test, we focused on inconsistencies in the test network rather than

incorrect data entry in the network plan. This test was developed to assess the live

network scan functionality of the mapping application. In the test, some devices were

turned off and cables were disconnected. These errors represent device outages or other

common problems when managing a live network. The network plan itself (see Appendix

G) is largely the same as the control configuration network plan with a single exception.

The variations created for this test are as follows:

 Subnet 192.168.0.208/30 and 192.168.0.12/30 are merged into a single
subnet: 192.168.0.208/29. Given the intended network configuration, this
creates an invalid IP addressing scheme because there are multiple
collision domains using the same subnet.

 The connection between R1 interface fa0/1 and R4 interface fa0/1 was
unplugged.

 Client5 was turned off.

After importing the invalid configuration network plan, the parse log shows no

indication of any problems, as expected. We then scanned the live network, producing the

scan console log output shown in Figure 34. The mapping application correctly identifies

that R1 interface fa0/1 and R4 interface fa0/1 are unreachable as a result of the unplugged

cable. The Edge object representing the connection between these two interfaces has been

set to “MISSING.” The application also identified that Client5 was unreachable, the

result of that computer being turned off.

 52

Figure 34. Invalid Network Configuration Scan Log.

The visualization of the live network scan results (see Figure 35) reflects the

errors annotated in the scan console log. In addition to identifying the missing device, the

mapping application correctly identifies and displays errors in the connections between

devices. The edge representing the connection between R1 interface fa0/1 and R4

interface fa0/1 has been set to “MISSING” and is thus colored orange. The edges

between R2 interface fa0/1 and R3 interface fa0/1 and between R4 interface fa0/0 and R5

interface fa0/1 are both set as “INCORRECT” and colored yellow. This indicates a

potential problem with the IP addressing scheme where the interfaces on these edges are

expected to be on the same subnet. This is an invalid network configuration.

 53

Figure 35. Invalid Network Configuration Scan Visualization.

D. SUMMARY

This chapter details the testing and evaluation conducted on the MAVNATT

mapping module application. We established a physical test network that closely

resembles those in use by Marine Corps units to provide a consistent and modifiable

environment on which to run test scenarios. Four separate network plans and

configurations were developed to test specific functional points of the mapping

application. These test scenarios showed that the mapping application functions as

expected and correctly identifies potential problems in a network plan as well as conflicts

between the network plan and the actual live network configuration. Results from these

tests show that the live network scan results combined with the network plan

visualization provide a useful tool for network administrators to troubleshoot networks.

 54

THIS PAGE INTENTIONALLY LEFT BLANK

 55

V. CONCLUSION AND FUTURE WORK

A. CONCLUSION

In this thesis, we have successfully developed a network mapping application for

integration into the proposed MAVNATT system. This application provides functionality

for network administrators to develop a network plan, visualize and verify that plan, scan

the live network for comparison and validation, and export the network configuration for

import and use by the MAVNATT awareness and virtualization modules. These

functions of the mapping application provide the necessary foundation and starting point

to virtualize an accurate replica of a local area network for use in training and security

applications.

The proposed network plan format allows the network administrator to succinctly

and accurately define all entities on a network. The XML-style tagging provides for

extensibility in the future, as more tags can be defined and implemented to increase

the level of detail or introduce new elements to the network configuration. The decision

to generate the plan in Microsoft Excel facilitates ease of use and portability across

a broad range of computers due to the popularity and widespread use of the program.

The plan is easily generated, modified and extended without reliance on complicated

database applications or proprietary programs for data storage and manipulation. Most

importantly, the .xlsx file format can be exported to a simple text file, allowing the

mapping application to import and parse the network plan.

The mapping application uses an object-oriented framework to represent the

network architecture in a complete, detailed, and extensible manner. The relational

interactions between objects in the network framework correctly mimic hierarchy and

interconnectivity of devices on a LAN. This allows for future development,

implementation, and extension to provide further functionality, detail and feature sets by

extending the individual objects within the framework. Furthermore, this framework

provides a foundation for use by other modules with the MAVNATT system to interact

with and develop network-related structures.

 56

The visualization feature of the mapping application is an important function that

assists the network administrator in verifying the network, allowing for quick recognition

of problems and pitfalls. The visual representation of the network plan after its import

provides an opportunity to recognize potential errors in the planned configuration and

settings. Likewise, the visualization of the live network after scanning provides an easy to

use tool, color coded for quick reference and confirmation of actual settings compared to

the expected values of the network plan. The visualization screens are reconfigurable,

allowing the user to drag, rotate, and shift individual nodes in the graph to a location of

their choice. This further facilitates ease of use, allowing network administrators to

customize the visualization to their liking.

In addition to the simple visualization view, the application displays log messages

to the console throughout the mapping process. These log messages provide further detail

on the status of the mapping effort, identifying potential errors and misconfigured

settings in the process. When mapping is complete, the user has the option to save a

detailed report of the current network configuration and settings as a text file. These log

messages and configuration files provide the fine-grained detail needed for the network

administrator to correct problems identified during the mapping and visualization

process.

Finally, the mapping application provides functionality to export the network in

the GraphML file format. This file provides information about the configuration and

settings of the network, including details of individual network entities as well as

connections between devices. The content of the file can be easily extended, either

manually or by making alterations to the mapping application itself. This again provides

the necessary framework for the future addition of features including increased detail of

network entities. This export operation is a key function, as it provides the necessary

information required for other modules within the MAVNATT framework to import a

complete network representation.

We believe this mapping application provides a full-featured foundation for the

proposed MAVNATT system. The application includes all the functionality needed to

correctly and accurately plan, visualize, scan and export a representation of a local area

 57

network. This representation can be used for analysis or for further import by another

module in the MAVNATT system.

B. FUTURE WORK

This application provides the basic functionality needed to satisfy the

requirements of the MAVNATT mapping module; however, there are areas for further

research as well as the implementation of increased functionality. Enhancements to the

mapping application itself can be made to increase the detail available for individual

network entities, provide an improved feature set for the application, or to allow for

increased flexibility within the network plan. Further work is also required to fully

implement, test, and integrate the mapping module into the MAVNATT framework to

provide a start-to-finish functionality of mapping, monitoring, and virtualizing a network.

1. Increased Detail and Flexibility

The mapping application in its current state provides a limited amount of detail

for representing a LAN. Individual devices are identified by the MAC address and IP

address, with the ability to store additional data such as device name, gateway router, etc.

Future implementations can expand on this foundation to provide an increased level of

detail and fidelity, allowing for greater depth when representing a network. Advanced

methods such as device fingerprinting and connection-oriented data collection can be

used to increase the level of fidelity for identification of networked devices.

a. Device Fingerprinting

A device fingerprinting approach would provide functionality to uniquely identify

specific machines on the network with a higher level of fidelity. Such an approach would

require a network administrator to generate an initial database of fingerprints, either for

individual devices on the network, or for specific subsets of devices with particular

services. After the initial establishment of the fingerprint database, the live network scan

can confirm or deny the presence of a networked device via the stored identifying

information rather than just the MAC address or IP address.

 58

b. Connection-Oriented Data Collection

The mapping application currently uses probing techniques to retrieve data about

networked devices. The application sends a probe to specific addresses, eliciting an

automatic response from the network stack of that device without actually making a

connection. This response is then parsed for required information. A connection-oriented

approach would allow the user to collect more in-depth information about specific

devices. Options for initiating connections to remote devices include Secure Shell for

routers, or the establishment of Simple Network Management Protocol relationships

between the devices on the network.

c. Dynamic Network Configurations

The devised network plan format described in Chapter III, Section C, requires

static assignment of IP addresses for all devices on the network. This format presents

complications when mapping LANs that implement the Dynamic Host Configuration

Protocol to automatically assign IP addresses. Such implementation is common with

wireless networks or those that have devices connected intermittently. Future

improvements to the mapping application could account for the dynamic nature of such

networks. Doing so requires identifying devices on the network by features other than IP

address alone, such as the fingerprinting method described above. Another option would

be run a mapping application from a local host on each subnet in the LAN; however,

further research and development is needed to correlate that data and scan results from

multiple applications.

2. Mapping Unknown Networks

This implementation of the MAVNATT mapping module assumes administrator-

level access to a LAN along with detailed prior knowledge of the configuration and

topology of the network. There is currently no functionality for mapping an unknown

network from an unknown starting point. Further research and extension of the

application could potentially address this issue. Mapping a network from an unknown

starting point presents certain difficulties, and in many cases a topology cannot be

confirmed, only estimated. Extension of the mapping application to include the

 59

functionality to scan unknown networks could potentially lead to a tool to determine

information about adversarial networks.

a. Bounded Search Requirement

One difficulty when mapping an unknown network is the question of where to

stop. If a LAN consists of several subnets, then any effort to map the entire LAN must

necessarily send traffic across broadcast domains to reach devices separated by routers.

Without prior knowledge of the subnet and IP address allocation schemes, automated

mapping efforts could easily extend search areas to those beyond the LAN in question.

Methods to remedy this problem include enforcing a bounded search constraint by

limiting the hop count of probes from the source device, and artificially making

inferences about the subnet to be search. In either case, it is impossible to concretely

verify that the complete composition of a LAN has been discovered without at least some

prior knowledge of that LAN. Future research could investigate the limitations and

accuracy of an unbounded search in order to determine whether an automated application

is a viable option for mapping completely unknown networks.

b. Connection Information Discovery

The automatic discovery of device-to-device connection information within a

network represents a significant challenge. The implementation of the mapping

application in this thesis assumes that a planned connection is correct if both endpoints of

that connection have been confirmed; however, the actual physical connection topology

may deviate from the expected planned configuration. A subnet and its broadcast domain

may actually be subdivided by intermediate devices (e.g., hubs and switches). These

devices forward traffic on the data link layer and are virtually transparent on the network

layer; however, they also contain valuable information about the network topology via

the internal switch table which contains a MAC address listing of all connected devices.

Discovery of these devices and their corresponding connections would require additional

techniques for monitoring physical layer and data link layer traffic in conjunction with

network layer traffic, but will yield a much more robust picture of the network topology.

 60

c. Point of Collection

The amount and type of traffic available for analysis varies greatly with the point

of collection on the network, of which there are several options. Data collection can be

conducted from a host computer connected to the subnet, which is the method employed

by the mapping application in this thesis. Alternatively, a wiretap device can be used to

passively collect traffic from a point within the network. Both options allow for

collection and analysis of local network traffic, but both require physical access to the

network. In certain scenarios, such as mapping an adversarial network, physical access is

not a viable option. Mapping from within a network is fundamentally different from

mapping from an external position. Efforts to map an external network can be constrained

by several factors including network address translation, firewalls, and security policies

which may hinder mapping efforts using typical scanning techniques.

3. Integration, Testing, and Utilization

As of publication of this thesis, the MAVNATT system has not been fully

implemented or integrated. In addition to the mapping application proposed here, a

solution for the virtualization module has been proposed by Naval Postgraduate School

student, Erik Berndt [22]. Further research on the implementation of the proposed

awareness module, as well as integration of the three modules into the overall

MAVNATT framework, is required.

a. MAVNATT Awareness Module Development

The goal of the proposed awareness module is to monitor a live network and

provide the network administrator with real-time updates of changes to the status of the

network. This can be accomplished by using the network framework described in Chapter

III, Section B, to accurately represent the live network in its current state. An application

to passively monitor network traffic can compare information found in packet headers

and payloads to that of the expected values of the mapped network. This functionality is

similar to that of the mapping application; an awareness module might be implemented

by extending the functionality of the mapping application to provide a periodic or

continuous feedback loop.

 61

b. Module Integration into the MAVNATT Framework

Further research is required to integrate the mapping module into the proposed

MAVNATT framework and to conduct a complete process of replicating a live network

starting from a network plan. The network plan used as input to the mapping application

and the file formats available for export have been carefully developed to allow for

portability and extensibility. In particular, the GraphML file format contains all required

information to represent the network to a sufficient level of detail to create a virtualized

replica of that network. In theory, the awareness and virtualization modules can import

the GraphML file generated by the mapping application; however, further refinements

may be required to ensure compatibility and test functionality.

c. MAVNATT Testing

Upon completion of development and integration of all MAVNATT modules,

research is required to test functionality and limitations of the overall system. The desired

end state is that a user can generate and import a network plan, scan the live network to

compare findings, monitor the network based on those finding, and create a virtualized

replica of the network. Testing is required to determine limitations on the type and

number of devices that can be virtualized and any potential errors when virtualizing

planned networks.

d. Utilization of the MAVNATT System

The initially proposed purpose of the MAVNATT system was to allow network

administrators a training tool for evaluating their local network without fear of disrupting

the live network stability. The functionality of MAVNATT to plan and virtualize

practically any network configuration provides the opportunity to use it in scenarios other

than for network administrator training, such as those employed on cyber ranges. A cyber

range is a fully functional network environment used for testing and training purposes

that extend beyond the scope of general network administration. Typical cyber range

usage scenarios include:

 Penetration testing to determine vulnerabilities in the network
configuration and how to defend against exploitation.

 62

 Simulation of effects of malware or viruses on the network.

 Training for the offensive exploitation of network vulnerabilities.

Cyber ranges are generally set up as physical networks, limiting their availability

and scale of the network topology. The ability to dynamically configure and virtualize a

network with the MAVNATT system could potentially provide a new method for

employing cyber ranges. Extended cyber ranges could also be created by connecting two

or more virtualized networks, or by connecting a virtualized network to a physical cyber

range.

 63

APPENDIX A. NETWORK FRAMEWORK UML DIAGRAM

 64

THIS PAGE INTENTIONALLY LEFT BLANK

 65

APPENDIX B. NETWORK PLAN CSV FILE

<NETWORKS>,,,,,,
Subnet ID,Notes,,,,,
192.168.0.0/26,,,,,,
192.168.0.64/26,,,,,,
192.168.0.208/30,,,,,,
</NETWORKS>,,,,,,
<ROUTERS>,,,,,,
Router Name,Interface Name,Interface MAC,Interface IP,Next Hop (IP or switch name),,
R2,fa0/1,00:1B:D4:EF:5C:89,192.168.0.209,192.168.0.210,,
R2,fa0/0/0,00:1B:D4:EF:5C:88,192.168.0.1,Switch 1,,
R3,fa0/1,00:1B:54:A9:6D:C9,192.168.0.210,192.168.0.209,,
R3,fa0/0/0,58:8D:09:76:E9:F4,192.168.0.65,Switch 2,,
</ROUTERS>,,,,,,
<HOSTS AND CLIENT DEVICES>,,,,,,
Host Name,Interface Name,Interface MAC,Interface IP,Next Hop (IP or switch name),Gateway Address,Device Type
Client2,eth0,C8:1F:66:07:0F:1D,192.168.0.20,Switch 1,192.168.0.1,COMPUTER
Client3,eth0,C8:1F:66:0F:D6:B9,192.168.0.30,Switch 1,192.168.0.1,COMPUTER
Client5,eth0,D8:CB:8A:60:4B:E0,192.168.0.80,Switch 2,192.168.0.65,COMPUTER
Client6,eth0,C8:1F:66:07:10:7E,192.168.0.90,Switch 2,192.168.0.65,COMPUTER
Printer2,ethernet,00:15:99:D5:5D:34,192.168.0.100,Switch 2,192.168.0.65,PRINTER
</HOSTS AND CLIENT DEVICES>,,,,,,
<LAYER 2 SWITCHES>,,,,,,
Switch Name,Number of connections,,,,,
Switch 1,3,,,,,
Switch 2,4,,,,,
</LAYER 2 SWITCHES>,,,,,,
<IMAGE FILES>,,,,,,
Platform Name,Operating System Name,Image File Location,,,,
R2,IOS,C:\Users\M4600\Desktop\MAVNATT\REPO\router2.vdi,,,,
R3,IOS,C:\Users\M4600\Desktop\MAVNATT\REPO\router3.vdi,,,,
Client2,Ubuntu,C:\Users\M4600\Desktop\MAVNATT\REPO\Ubuntu_1.vdi,,,,
Client3,Windows 10,C:\Users\M4600\Desktop\MAVNATT\REPO\Windows10_1.vdi,,,,
Client5,Ubuntu,C:\Users\M4600\Desktop\MAVNATT\REPO\Ubuntu_1.vdi,,,,
Client6,Ubuntu,C:\Users\M4600\Desktop\MAVNATT\REPO\Ubuntu_1.vdi,,,,
</IMAGE FILES>,,,,,,

 66

THIS PAGE INTENTIONALLY LEFT BLANK

 67

APPENDIX C. LIVE NETWORK DETAILS FILE

Results of live network scan on Thu Apr 07 09:05:06 PDT 2016

==============NETWORK DEVICES==============

Name: R2
 Type: ROUTER
 Operating System: IOS
 Status: CONFIRMED

 Interface: fa0/1
 IPv4 Address: 192.168.0.209
 MAC Address: 00:1B:D4:EF:5C:89
 Status: CONFIRMED

 Interface: fa0/0/0
 IPv4 Address: 192.168.0.1
 MAC Address: 00:1B:D4:EF:5C:88
 Status: CONFIRMED

Name: R3
 Type: ROUTER
 Operating System: IOS
 Status: CONFIRMED

 Interface: fa0/0/0
 IPv4 Address: 192.168.0.65
 MAC Address: 58:8D:09:76:E9:F4
 Status: CONFIRMED

 Interface: fa0/1
 IPv4 Address: 192.168.0.210
 MAC Address: 00:1B:54:A9:6D:C9
 Status: CONFIRMED

Name: Client2
 Type: COMPUTER
 Operating System: Linux 3.2 - 4.4
 Status: CONFIRMED

 Interface: eth0
 IPv4 Address: 192.168.0.20
 MAC Address: C8:1F:66:07:0F:1D
 Status: CONFIRMED

 68

Name: DESKTOP-CLIENT3
 Type: COMPUTER
 Operating System: Windows 10
 Status: CONFIRMED

 Interface: eth1
 IPv4 Address: 192.168.0.30
 MAC Address: C8:1F:66:0F:D6:B9
 Status: CONFIRMED

Name: Client5
 Type: COMPUTER
 Operating System: Linux 3.2 - 4.4
 Status: CONFIRMED

 Interface: eth0
 IPv4 Address: 192.168.0.80
 MAC Address: D8:CB:8A:60:4B:E0
 Status: CONFIRMED

Name: Client6
 Type: COMPUTER
 Operating System: Linux 3.2 - 4.4
 Status: CONFIRMED

 Interface: eth0
 IPv4 Address: 192.168.0.90
 MAC Address: C8:1F:66:07:10:7E
 Status: CONFIRMED

Name: Printer2
 Type: PRINTER
 Operating System:
 Status: CONFIRMED

 Interface: ethernet
 IPv4 Address: 192.168.0.100
 MAC Address: 00:15:99:D5:5D:34
 Status: CONFIRMED

Name: Switch 1
 Type: SWITCH
 Connections: 3

Name: Switch 2
 Type: SWITCH
 Connections: 4

 69

============NETWORK CONNECTIONS============

<192.168.0.210 <--> 192.168.0.209> : CONFIRMED
<192.168.0.20 <--> Switch 1> : CONFIRMED
<192.168.0.30 <--> Switch 1> : CONFIRMED
<192.168.0.1 <--> Switch 1> : CONFIRMED
<192.168.0.100 <--> Switch 2> : CONFIRMED
<192.168.0.90 <--> Switch 2> : CONFIRMED
<192.168.0.80 <--> Switch 2> : CONFIRMED
<192.168.0.65 <--> Switch 2> : CONFIRMED

 70

THIS PAGE INTENTIONALLY LEFT BLANK

 71

APPENDIX D. CONTROL CONFIGURATION NETWORK PLAN

Subnet ID
192.168.0.0/26
192.168.0.64/26
192.168.0.128/30
192.168.0.200/30
192.168.0.204/30
192.168.0.208/30
192.168.0.212/30
192.168.0.216/30

Router Name Interface Name Interface MAC Interface IP
R1 fa0/0 00:15:63:40:83:80 192.168.0.201 192.168.0.202
R1 fa0/1 00:15:63:40:83:81 192.168.0.217 192.168.0.218
R1 fa0/0/0 54:75:D0:7C:70:9F 192.168.0.129 192.168.0.130
R2 fa0/0 00:1B:D4:EF:5C:88 192.168.0.1 Switch 1
R2 fa0/1 00:1B:D4:EF:5C:89 192.168.0.209 192.168.0.210
R2 fa0/0/0 EF:5F:B9:58:8B:74 192.168.0.206 192.168.0.205
R3 fa0/0 00:1B:54:A9:6D:C8 192.168.0.202 192.168.0.201
R3 fa0/1 00:1B:54:A9:6D:C9 192.168.0.210 192.168.0.209
R3 fa0/0/0 58:8D:09:76:E9:F4 192.168.0.65 Switch 2
R4 fa0/0 00:18:73:1D:27:00 192.168.0.213 192.168.0.214
R4 fa0/1 00:18:73:1D:27:01 192.168.0.218 192.168.0.217
R5 fa0/0 00:17:59:71:34:B0 192.168.0.205 192.168.0.206
R5 fa0/1 00:17:59:71:34:B1 192.168.0.214 192.168.0.213

Host Name Interface Name Interface MAC Interface IP Next Hop (IP or switch name) Gateway Address Device Type
Client1 eth0 C8:1F:66:07:12:05 192.168.0.10 Switch 1 192.168.0.1 COMPUTER
Client2 eth0 C8:1F:66:07:0F:1D 192.168.0.20 Switch 1 192.168.0.1 COMPUTER
Client3 eth0 C8:1F:66:0F:D6:B9 192.168.0.30 Switch 1 192.168.0.1 COMPUTER
Client4 eth0 D8:CB:8A:60:4C:3B 192.168.0.70 Switch 2 192.168.0.65 COMPUTER
Client5 eth0 D8:CB:8A:60:4B:E0 192.168.0.80 Switch 2 192.168.0.65 COMPUTER
Client6 eth0 C8:1F:66:07:10:7E 192.168.0.90 Switch 2 192.168.0.65 COMPUTER
Printer2 00:15:99:D5:5D:34 192.168.0.100 Switch 2 192.168.0.65 PRINTER
Web Server eth0 00:1A:A0:56:6C:B2 192.168.0.130 192.168.0.129 192.168.0.129 COMPUTER

Switch Name Number of connections
Switch 1 4
Switch 2 5

Notes
<NETWORKS>

<ROUTERS>

<HOSTS AND CLIENT DEVICES>

</NETWORKS>

</ROUTERS>

</HOSTS AND CLIENT DEVICES>

</LAYER 2 SWITCHES>

<LAYER 2 SWITCHES>

Next Hop (IP or switch name)

 72

THIS PAGE INTENTIONALLY LEFT BLANK

 73

APPENDIX E. INVALID NETWORK PLAN

Subnet ID
192.168.0.0/26
192.168.0.64/26
192.168.0.128/30
192.168.0.200/30
192.168.0.204/30
192.168.0.208/30

192.168.0.2122/30
192.168.0.216/30

Router Name Interface Name Interface MAC Interface IP
R1 fa0/0 00:15:63:40:83:80 192.168.0.201 192.168.0.202
R1 fa0/1 00:15:63:40:83:81 192.168.0.217 192.168.0.218
R1 fa0/0/0 54:75:D0:7C:70:9F 192.168.0.129 192.168.0.130
R2 fa0/0 E0:5F:B9:58:8B:74 192.168.0.1 Switch 1
R2 fa0/1 00:1B:D4:EF:5C:89 192.168.0.209 192.168.0.210
R2 fa0/0/0 00:1B:D4:EF:5C:88 192.168.0.206 192.168.0.205
R3 fa0/0 00:1B:54:A9:6D:C8 192.168.0.202 192.168.0.201
R3 fa0/1 00:1B:54:A9:6D:C9 192.168.0.210 192.168.0.211
R3 fa0/0/0 58:8D:09:76:E9:F4 192.168.0.65 Switch 3
R4 fa0/0 00:18:73:1D:27:00 192.168.0.213 192.168.0.214
R4 fa0/1 00:18:73:1D:27:01 192.168.0.218 192.168.0.217
R5 fa0/0 00:17:59:71:34:B0 192.168.0.205 192.168.0.206
R5 fa0/1 00:17:59:71:34:B1 192.168.0.214 192.168.0.213

Host Name Interface Name Interface MAC Interface IP Next Hop (IP or switch name) Gateway Address Device Type
Client1 eth0 C8:1F:66:07:12:05 192.168.0.10 Switch 1 192.168.0.1 COMPUTER
Client2 eth0 C8:1F:66:07:0F:1D 192.168.0.20 Switch 1 192.168.0.1 COMPUTER
Client3 eth0 C8:1F:66:0F:D6:B9 192.168.0.30 Switch 1 192.168.0.1 COMPUTER
Client4 eth0 D8:CB:8A:60:4C:3B 192.168.0.70 Switch 2 192.168.0.65 COMPUTER
Client5 eth0 D8:CB:8A:60:4B:E0 192.168.0.80 Switch 2 192.168.0.65 COMPUTER
Client6 eth0 C8:1F:66:07:10:7E 192.168.0.90 Switch 2 192.168.0.65 COMPUTER
Printer2 00:15:99:D5:5D:34 192.168.0.100 Switch 2 192.168.0.65 PRINTER
Web Server eth0 00:1A:A0:56:6C:B2 192.168.0.130 192.168.0.129 192.168.0.129 COMPUTER

Switch Name Number of connections
Switch 1 4
Switch 2 5

Notes
<NETWORKS>

<ROUTERS>

<HOSTS AND CLIENT DEVICES>

</NETWORKS>

</ROUTERS>

</HOSTS AND CLIENT DEVICES>

</LAYER 2 SWITCHES>

<LAYER 2 SWITCHES>

Next Hop (IP or switch name)

 74

THIS PAGE INTENTIONALLY LEFT BLANK

 75

APPENDIX F. INCORRECT DETAILS NETWORK PLAN

Subnet ID
192.168.0.0/26
192.168.0.64/26
192.168.0.128/30
192.168.0.200/30
192.168.0.204/30
192.168.0.208/30
192.168.0.212/30
192.168.0.216/30

Router Name Interface Name Interface MAC Interface IP
R1 fa0/0 00:15:63:40:83:80 192.168.0.201 192.168.0.202
R1 fa0/1 00:15:63:40:83:81 192.168.0.217 192.168.0.218
R1 fa0/0/0 54:75:D0:7C:70:9F 192.168.0.129 192.168.0.130
R2 fa0/0 E0:5F:B9:58:8B:74 192.168.0.1 Switch 1
R2 fa0/1 00:1B:D4:EF:5C:89 192.168.0.209 192.168.0.210
R2 fa0/0 00:1B:D4:EF:5C:88 192.168.0.206 192.168.0.205
R3 fa0/0/0 00:1B:54:A9:6D:C8 192.168.0.202 192.168.0.201
R3 fa0/1 00:1B:54:A9:6D:C9 192.168.0.210 192.168.0.211
R3 fa0/0/0 58:8D:09:76:E9:F4 192.168.0.65 Switch 2
R4 fa0/0 00:18:73:1D:27:00 192.168.0.213 192.168.0.214
R4 fa0/1 00:18:73:1D:27:01 192.168.0.218 192.168.0.217
R5 fa0/0 00:17:59:71:34:B0 192.168.0.205 192.168.0.206
R5 fa0/1 00:17:59:71:34:B1 192.168.0.214 192.168.0.213

Host Name Interface Name Interface MAC Interface IP Next Hop (IP or switch name) Gateway Address Device Type
Client1 eth0 C8:1F:66:07:12:05 192.168.0.10 Switch 1 192.168.0.1 COMPUTER
Client2 eth0 C8:1F:66:07:0F:1E 192.168.0.20 Switch 1 192.168.0.1 COMPUTER

Client3 eth0 C8:1F:66:0F:D6:B9 192.168.0.33 Switch 1 192.168.0.1 COMPUTER

Client4 eth0 D8:CB:8A:60:4C:3B 192.168.0.70 Switch 2 192.168.0.65 COMPUTER
Client5 eth0 D8:CB:8A:60:4B:E0 192.168.1.88 Switch 2 192.168.0.65 COMPUTER

Client6 eth0 C8:1F:66:07:10:7E 192.168.0.90 Switch 2 192.168.0.65 COMPUTER
Printer2 00:15:99:D5:5D:33 192.168.0.100 Switch 2 192.168.0.65 PRINTER

Web Server eth0 00:1A:A0:56:6C:B2 192.168.0.130 192.168.0.129 192.168.0.129 COMPUTER

Switch Name Number of connections
Switch 1 4
Switch 2 5

Notes
<NETWORKS>

<ROUTERS>

<HOSTS AND CLIENT DEVICES>

</NETWORKS>

</ROUTERS>

</HOSTS AND CLIENT DEVICES>

</LAYER 2 SWITCHES>

<LAYER 2 SWITCHES>

Next Hop (IP or switch name)

 76

THIS PAGE INTENTIONALLY LEFT BLANK

 77

APPENDIX G. INVALID CONFIGURATION NETWORK PLAN

Subnet ID
192.168.0.0/26
192.168.0.64/26
192.168.0.128/30
192.168.0.200/30
192.168.0.204/30

192.168.0.208/29
192.168.0.216/30

Router Name Interface Name Interface MAC Interface IP
R1 fa0/0 00:15:63:40:83:80 192.168.0.201 192.168.0.202
R1 fa0/1 00:15:63:40:83:81 192.168.0.217 192.168.0.218

R1 fa0/0/0 54:75:D0:7C:70:9F 192.168.0.129 192.168.0.130
R2 fa0/0 00:1B:D4:EF:5C:88 192.168.0.1 Switch 1
R2 fa0/1 00:1B:D4:EF:5C:89 192.168.0.209 192.168.0.210

R2 fa0/0/0 E0:5F:B9:58:8B:74 192.168.0.206 192.168.0.205
R3 fa0/0 00:1B:54:A9:6D:C8 192.168.0.202 192.168.0.201
R3 fa0/1 00:1B:54:A9:6D:C9 192.168.0.210 192.168.0.209

R3 fa0/0/0 58:8D:09:76:E9:F4 192.168.0.65 Switch 2
R4 fa0/0 00:18:73:1D:27:00 192.168.0.213 192.168.0.214

R4 fa0/1 00:18:73:1D:27:01 192.168.0.218 192.168.0.217
R5 fa0/0 00:17:59:71:34:B0 192.168.0.205 192.168.0.206
R5 fa0/1 00:17:59:71:34:B1 192.168.0.214 192.168.0.213

Host Name Interface Name Interface MAC Interface IP Next Hop (IP or switch name) Gateway Address Device Type
Client1 eth0 C8:1F:66:07:12:05 192.168.0.10 Switch 1 192.168.0.1 COMPUTER
Client2 eth0 C8:1F:66:07:0F:1D 192.168.0.20 Switch 1 192.168.0.1 COMPUTER
Client3 eth0 C8:1F:66:0F:D6:B9 192.168.0.30 Switch 1 192.168.0.1 COMPUTER
Client4 eth0 D8:CB:8A:60:4C:3B 192.168.0.70 Switch 2 192.168.0.65 COMPUTER
Client5 eth0 D8:CB:8A:60:4B:E0 192.168.0.80 Switch 2 192.168.0.65 COMPUTER
Client6 eth0 C8:1F:66:07:10:7E 192.168.0.90 Switch 2 192.168.0.65 COMPUTER
Printer2 00:15:99:D5:5D:34 192.168.0.100 Switch 2 192.168.0.65 PRINTER
Web Server eth0 00:1A:A0:56:6C:B2 192.168.0.130 192.168.0.129 192.168.0.129 COMPUTER

Switch Name Number of connections
Switch 1 4
Switch 2 5

Notes
<NETWORKS>

<ROUTERS>

<HOSTS AND CLIENT DEVICES>

</NETWORKS>

</ROUTERS>

</HOSTS AND CLIENT DEVICES>

</LAYER 2 SWITCHES>

<LAYER 2 SWITCHES>

Next Hop (IP or switch name)

 78

THIS PAGE INTENTIONALLY LEFT BLANK

 79

LIST OF REFERENCES

[1] D. C. McBride, “Mapping, awareness, and virtualization network administrator's
training tool (MAVNATT) architecture and framework,” M.S. thesis, Dept. of
Computer Science, Naval Postgraduate School, Monterey, CA, 2015.

[11] Sun Microsystems. (2000). System Administration Guide [eBook version].
[Online]. Available: https://docs.oracle.com/cd/E19455-01/806-
0916/6ja85398m/index.html

[3] Zeezoh95. “The OSI model...dissected.” [Online]. Available:
https://itsjustusdeveloperstutorialservices.wordpress.com/author/zeezoh95/. [4
September 2015].

[4] IEEE Standards Association. “Guidelines for 48-bit global identifier (EUI-48).”
[Online]. Available: https://standards.ieee.org/develop/regauth/tut/eui48.pdf.
[Accessed 29 March 2016].

[5] Y. Rekhter, B. Moskowitz, D. Karrenberg, G. J. de Groot, and E. Lear, RFC
1918: Address Allocation for Private Internets, 1996.

[6] V. Fuller and T. Li, RFC 4632: Classless Inter-domain Routing (CIDR): The
Internet Address Assignment and Aggregation Plan, 2006.

[7] C. M. Kozierok. “The TCP/IP guide - IP 'supernetting': classless inter-domain
routing (CIDR) hierarchical addressing and notation.” [Online]. Available:
http://www.tcpipguide.com/free/t_IPSupernettingClasslessInterDomainRoutingCI
DRHiera-2.htm. [20 September 2005].

[8] Microsoft. “The TCP/IP model: TCP/IP.” [Online]. Available:
https://technet.microsoft.com/en-
us/library/cc786900%28v=ws.10%29.aspx?f=255&MSPPError=-2147217396.
[21 January 2005].

[9] The Internet Society. “About the IETF.” [Online]. Available:
https://www.ietf.org/about/. [18 September 2014].

[10] T. Pickett. “Back to basics with the OSI model - adventures in network
engineering.” [Online]. Available: http://www.tonypickett.com/2013/07/back-to-
basics-with-the-osi-model/. [12 July 2013].

[11] K. Wehrle, F. Pahlke, H. Ritter, D. Muller, and M. Bechler. (2004). “Address
resolution protocol (ARP),” in The Linux® Networking Architecture: Design and
Implementation of Network Protocols in the Linux Kernel [eBook version].
[Online]. Available: http://flylib.com/books/en/3.475.1.75/1/

 80

[12] K. Wehrle, F. Pahlke, H. Ritter, D. Muller, and M. Bechler. (2004). “The Internet
protocol v4,” in The Linux® Networking Architecture: Design and
Implementation of Network Protocols in the Linux Kernel [eBook version].
[Online]. Available: http://flylib.com/books/en/3.475.1.70/1/

[13] G. Lyon. (2011). Nmap Network Scanning [eBook version]. [Online]. Available:
http://nmap.org/book/

[14] K. Wehrle, F. Pahlke, H. Ritter, D. Muller, and M. Bechler. (2004). “Internet
control message protocol (ICMP),” in The Linux® Networking Architecture:
Design and Implementation of Network Protocols in the Linux Kernel [eBook
version]. [Online]. Available: http://flylib.com/books/en/3.475.1.74/1/

[15] K. Wehrle, F. Pahlke, H. Ritter, D. Muller, and M. Bechler. (2004).
“Transmission control protocol (TCP),” in The Linux® Networking Architecture:
Design and Implementation of Network Protocols in the Linux Kernel [eBook
version]. [Online]. Available: http://flylib.com/books/en/3.475.1.118/1/

[16] J. O'Madadhain, D. Fisher, and S, White. (2010). JUNG - Java Universal
Network/Graph Framework [Online]. Available:
http://jung.sourceforge.net/download.html. [Accessed 10 March 2016].

[17] G. Bernstein. “JUNG 2.0 tutorial.” [Online]. Available: http://www.grotto-
networking.com/JUNG/JUNG2-Tutorial.pdf. [22 April 2009].

[18] U. Brandes, M. Eiglsperger, and J. Lerner. “GraphML primer.” [Online].
Available: http://graphml.graphdrawing.org/primer/graphml-primer.html.
[Accessed 1 April 2016].

[19] W3C. “Extensible markup language (XML) 1.0 (fifth edition).” [Online].
Available: https://www.w3.org/TR/xml/. [26 November 2008].

[20] Oracle, Redwood Shores, CA. (2010). Java Platform, Standard Edition [Online].
Available:
http://www.oracle.com/technetwork/java/javase/downloads/index.html. [Accessed
9 March 2016].

[21] Object Management Group. “What is UML | unified modeling language.”
[Online]. Available: http://www.uml.org/what-is-uml.htm. [July 2005].

[22] E. Berndt. “Mapping, awareness, and virtualization network adminstrator training
tool: virtualization module,” M.S. thesis, Cyber Academic Group, Naval
Postgraduate School, Monterey, CA, 2016.

 81

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

